
Week 5: Training Data
Influence



Our starting point

Hammoudeh and Lowdʼs 2023 Survey

H&L for short in this slide deck

Covers 'early' stats work (1980s), more 'recent' ML work (2017)

Gives us a taxonomy of influence approaches and definitions



Basic definition

Imagine we have ourselves a nice, trained 'final model'. How much of itʼs

'value' boils to down to row 537 from our training set?



The grand question of influence

How much did playing high school sports impact your ability to be

successful in CS courses?

How much did that extra serving of fries contribute to my stomach ache

last night?

How much did this particular set of lectures slides contribute to your

learning outcomes in this course?



In general, these are all very hard questions. Quantitative social scientists,

especially in economics and sociology, like to try to answer them when

possible using experiments and clever analysis approaches.



But often in real life, weʼll just never know how your CS career would have

gone if you did / did not play high school basketball / hockey / basketball.



But models should be traceable

In the case of models, however… why canʼt we figured out exactly how

much row 537 contributed. Itʼs all just math, right?



Why we want to do this

A number of reasons given from H&L

detect anamolies

distribution shifts

measurement error

human labeling errors

adversarial actors



Influence and a data economy?

another big one: potential implications for a new post-AI 'data economy'



Can we calculate influences?

Depends on the definition of influence we use and the particular case

definitions can differ quite a bit

sometimes 'provably hard'

we can always estimate (but how good are the estimates)

1. in the CS sense ↩

[1]



Provably hard?

The cite from H&L is: Avrim L. Blum and Ronald L. Rivest. “Training a 3-Node

Neural Network is NP-Complete”. In: Neural Networks 5.1 (1992), pp. 117–127.

First two sentences of abstract: "We consider a 2-layer, 3-node, n-input

neural network whose nodes compute linear threshold functions of their

inputs. We show that it is NP-complete to decide whether there exist weights

and thresholds for the three nodes of this network so that it will produce

output con- sistent with a given set of training examples"



In general:

Exact influence calculation requires retraining without each example or

subset of examples

In mathematical terms, for a dataset of size n, youʼd need to consider 2^n

possible subsets to fully characterize influence

This is NP-hard and grows exponentially with dataset size.



Exact influence calculation requires retraining without each example or

subset of examples. In mathematical terms, for a dataset of size n, youʼd

need to consider 2^n possible subsets to fully characterize influence. This is

NP-hard and grows exponentially with dataset size.



Recall our notation

task  to learn mapping  from inputs  to outputs 

x called features (or covariates, or predictors)

y is label (or target, or response)

we have N input-output pairs  for . D is the

training set, N is the sample size.

T f x ∈ X y ∈ Y

D = (x  , y  )n n n ∈ (1,N)



More

Letʼs call our models . Some M tries to solve Task T.

Letʼs call our row of interest 

M

D  i



Different ways to relate  to 

influence analysis, aka data valuation, aka data attribution: which pieces of

training data get credit (and how much) for a specific model output

Leave-one-out influence = different between ʼsʼ performance with 

vs. without 

M D

M D  i

D  i



Brute force influence

"We can easily get all influences for all rows in . Just retrain  times!"

Well, if retraining was free…

D n



Influence estimation

Research area has sprung up around estimating training data influence

1. Made espeically popular after the publication of: Pang Wei Koh and Percy

Liang. “Understanding Black-box Predictions via Influence Functions”. In:

Proceedings of the 34th International Conference on Machine Learning.

ICMLʼ17. Sydney, Australia: PMLR, 2017. url:

https://arxiv.org/abs/1703.04730. ↩

[1]

https://arxiv.org/abs/1703.04730


About H&L̓ s paper

Itʼs a survey of the many perspective, definitions, and estimation

approaches for training data influence

The authors taxonomize the approaches



For the purposes of our course

You do not need to understand everything in this paper for CMPT 419! But

we will be able to get a lot out of it.



 is set of integers , i.e. the integers from 1 to r.

 means that A is a set of cardinality m (it has m items) drawn

uniformly at random from some other set B.

 is the power set of set A (set of all subsets, all combinations big and

small).

 is set subtraction (remove stuff in set B from set A)

1. WP article is helpful here: https://en.wikipedia.org/wiki/Power_set↩

2 S i l l h

[r] 1, ..., r

A ∼m B

2A
[1]

A ∖ B [2]

https://en.wikipedia.org/wiki/Power_set


More notation

We use bold-face 1 as the indicator function for some condition .

. The indicator function is equal to 1 when the predicate  is true (i.e. a is

the output of some boolean check).

a

1[a] a



More notation

 is a feature vector

 is our target

 in our training set

itʼs a set of  tuples , each tuple is 

x ∈ X ⊆ Rd

y ∈ Y

D

n z  i (x  , y  )i i



subscript  means itʼs a train examples

subscript  means itʼs a test examples, e.g.  is 

i

te z  te (x  , y  )te te



Our model is . Itʼs a function that maps from \mathscr to \mathscr

Parameters are 

, i.e.  is our number of parameters.

f

θ ∈ Rp

p := ∣θ∣ p



We have some loss function 

We have the empirical risk for an instance z, .

For loss and risk, smaller is better.

l

L(z; θ) := l(f(x; θ), y)



Some assumptions (and more notation)

We also assume  (many more parameters than columns in our data)

Using first order optimization (e.g. gradient descent) with  iterations

Start with initial params  and we get new params  at each time step 

p >> d

T

θ(0) θ(t) t



Other hyperparams:

learning rate 

weight decay 

We wonʼt worry to much about hyperparameters when weʼre dealing with

data valuation – we kind of assume "all that stuff is sorted, letʼs worry about

the data!"

η >(t) 0

λ



Gradients

We get training gradients defined as

∇  L(z  ; θ )θ i
(t)



That is, the gradient (with respect to parameters theta) of the empirical risk of

instance  for parameters at time step t.

This will be important!

1. Wikipediaʼs article on the gradient in vector calculus is pretty helpful as far

as math articles goes! https://en.wikipedia.org/wiki/Gradient↩

z  i
[1]

https://en.wikipedia.org/wiki/Gradient


Hessian

empirical risk hessian is

H  :=θ

(t)
  ∇  L(z  ; θ )

n
1 ∑z  ∈Di θ

2
i

(t)



Data missing some subset

 is  without instance 

We can write  to mean the parameters when trained with that instance

missing

You might begin to imagine why this will be useful!

D ∖ z  i D z  i

θ  t)
D∖z  i

(



Some vocab

proponents, excitatory examples: training examples with positive influence,

loss goes down when the example is added, which is "good".

opponents, inhibitory examples: training examples with negative influence,

loss goes up when the example is added, which is "bad".

pointwise influence: effect of single instance on single metric (e.g. test

loss)



Agenda

Review training gradients

Quick overview: retraining based data values

Quick overview: gradient based data values



Quick review of training gradients

Imagine weʼre trying to predict a single output value  from a single input

value  using a simple neural network. The networkʼs prediction  is given by

Where:

 is the weight of the connection between the input and output neuron.

 is the bias.

 is the input.

y

x  ŷ

 =ŷ wx + b

w

b

x



Objective of our training

want to adjust  and  to get  close to real 

measure how weʼre doing with loss

example choice: Mean Squared Error (MSE)

w b  ŷ y

L =  (y −2
1

 )ŷ 2



Training Gradients in this example

Training gradients indicate in which direction (and by how much) we should

adjust our params (  and ) to minimize loss

To find these gradients, we use backpropagation, which involves calculating

the derivative of the loss function with respect to each parameter

w b



Note on terms

In our reading, we use  to refer to a vector of arbitrary number of params

(cardinality is ).

So in this example we can assume

 and  (thereʼs just two params)

θ

p

θ =< w, b > p = 2



Gradient wrt 

tells how a small change in  affects loss.

If  is positive, increasing  will increase the loss, so we should decrease

 to reduce the loss.

w

 =∂w
∂L −(y −  ) ⋅ŷ x

w

 ∂w
∂L w

w



How did we get gradient wrt ?

plugin  into 

or, just apply chain rule

w

 ŷ L

L =  (y −2
1 (wx + b))2

 =∂w
∂L

  ∂  ŷ
∂L

∂w
∂  ŷ



How did we get gradient wrt w?

 =∂  ŷ
∂L

 (  (y −∂  ŷ
∂

2
1

 ) ) =ŷ 2 −(y −  ) =ŷ  −ŷ y

 =∂w
∂  ŷ

 (wx +∂w
∂ b) = x



Chain rule helps out

Note that we can also just multiply everything out and compute partial

derivatives without the chain rule

Chain rule is just convenient for composite function. Here  is a function of

w, x, and b.

Note that if we have an activation function, itʼs even more helpful…

 ŷ



Example with actual values, 1/n

Suppose

Input value 

Actual output value 

Weight 

Bias 

Want gradient of  wrt  still

x = 2

y = 5

w = 1

b = 1

L w



Example with actual values, 2/n

( )x = 2, y = 5,w = 1, b = 1

 =ŷ wx + b = 1 ∗ 2 + 1 = 3

L =  (y −2
1

 ) =ŷ 2
 (5 −2

1 3) =2 2

 =∂w
∂L −(y −  )x =ŷ −(5 − 3) ∗ 2 = −4



Example with actual values, 3/n

Small increase in  will decrease loss, so adjust  upwards

We make our update based on learning rate, 

w w

η



Gradient wrt 

tells us how a small change in  affects the loss. Similarly, if  is positive,

increasing  will increase the loss, so we should decrease  to reduce the

loss.

b

 =∂b
∂L −(y −  )ŷ

b  ∂b
∂L

b b



How did we get gradient wrt 

so, 

b

 =∂b
∂L

  ∂  ŷ
∂L

∂b
∂  ŷ

 =∂  ŷ
∂L −(y −  )ŷ

 =∂b
∂  ŷ

 (wx +∂  ŷ
∂ b) = 1

 =∂b
∂L −(y − )ŷ



Updating params

We update  and  using a learning rate  (a kind of step size, how far we

adjust things based on the direction of our gradients):

w b η

w = w − η  ∂w
∂L

b = b − η  ∂b
∂L



Iteration

This process is repeated for many iterations (or epochs) over the training

data, gradually reducing the loss and making the predictions  closer to the

actual outputs 

 ŷ

y



Other resources

We ignored activation function here

Exercise for the reader! What if we add ReLu or logistic activation function

(hint: now we have  and , so we have to do a 3-piece

chain rule)

Worth reviewing longer backprop materials

1. see e.g.

https://www.cs.toronto.edu/~rgrosse/courses/csc311_f20/slides/lec04.pdf,

http://neuralnetworksanddeeplearning.com/chap2.html↩

z = wx + b  =ŷ a(z)

[1]

https://www.cs.toronto.edu/~rgrosse/courses/csc311_f20/slides/lec04.pdf
http://neuralnetworksanddeeplearning.com/chap2.html


Relevance back to training data influence

Gradient based methods rely on the idea that: training data only influences

the final model via the gradients produced

We should be able to keep track of these gradients to understand how a

training instance affected a test instance



For a data valuator

We can assume gradients are being calculated throughout training

pytorch: requires_grad=True

another example: https://fluxml.ai/Flux.jl/stable/models/basics/

https://fluxml.ai/Flux.jl/stable/models/basics/

