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Agenda for this deck

Discuss training data influence methods from our reading

Goal: highlight key concepts to understand and think critically about



Methods weʼll discuss

Leave one out influence (LOO)

Downsampling

Shapley values

Influence functions



Leave-one-out influence

Our first retraining-based method



Notation reminder

: iteration count (how many times we did gradient descent)

: number of data points

: number of parameters

T
n
p



LOO: basic idea

remove an instance and see the change in risk

thatʼs pretty much all there is to it!

LOO is cool, because we can explain this to basically everyone.

"So you imagine what would happen if Google deleted all the data about,

and then retrained all their models – that would tell you your LOO influence

value"



LOO complexity

time complexity  for one retrain

so  for n data points

space complexity  (hold  values, each retrain has to hold 

params). (exact value depends on concurrency)

trade-off in terms of discarding models

O(T )
O(nT )

O(n + p) n p



Note on "incremental complexity"

incremental complexity here refers to the time it takes to calculate

influence for additional test instances



LOO pros and cons

simple, easy to understand

used for fairness, see BF21 in H+L

but: extremely expensive!

need to retrain even more if you want to account for variance in model

training



Additional notes on LOO

can efficiently calculate for KNN, see Jia+21a in H+L

 to calculate very close to exact value (vs. , where T is

probably pretty big)

can also efficiently calculate for decision tree, see Sha+18b

can efficiently estimate for linear regression

group influence: we can easily extend to "leave  out", 

O(nlog(n)) O(nT )

m  (m
n)



Can we really get LOO influence values?

So, while itʼs very expensive to get LOO values, thereʼs a bunch of

scenarios in which we can get actually get them

But perhaps we want to try out some of these other methods…



Downsampling

Our second retraining-based approach!



Downsampling: basic idea

Train an ensemble of submodels, i.e. sample dataset a bunch of times and

retrain + evaluate for each sample

calculate change in average risk when  is not used

consistent estimator of LOO (in the sense of "statistically consistent")

z  i



Downsampling compexity

instead of depending on size , our complexity depends on our selected

number of submodels . More submodels costs more but improves quality

of the estimator

itʼs otherwise very similar complexity analysis to LOO

cheaper than LOO, and we can vary number of submodels as needed (i.e.

if weʼre running out of time and need to give some influence estimates to

our boss!)

still expensive!

n
K



Downsampling: params we control

K: the number of submodels

m: how big is each submodel training data . In the work that introduced

downsampling, authors recommend 0.7 * n, i.e. 70% of the full data

Each instance  appears in  submodels

Dk

z  i K  i



Downsampling influence definition

Calculate average loss on one  across all submodels without 

Calculate average loss on one  across all with 

Subtract!

z  te z  i

z  te z  i



Downsampling influence intuition

If the loss without  is big (i.e., bad) and the loss with  is small (i.e. good),

example has positive influence

recall positive influence = improve some quality measure

If the loss without  is small (i.e. good) and the loss with  is big (i.e. bad),

example has negative influence

z  i z  i

z  i z  i



Downsampling and training variance

LOO had some issues with randomness in training / the idea that weʼll get

variance in our model performance if we just retrain with the same

architecture and data over and over

Downsampling is likely better in this regard



Downsampling: bounds and using it for

groups

"In practice, K, n, and m are finite. Nonetheless, Feldman and Zhang FZ20,

Lemma 2.1 prove that, with high probability, Downsamplingʼs LOO influence

estimation error is bounded given  and  ." - H&L pg 13

"Downsampling trivially extends to estimate the expected group influence

of multiple training instances. Observe however that the expected fraction

of u.a.r. training subsets that either contains all instances in a group or

none of a group decays geometrically with  and , respectively"

K  n
m

 n
m (1 −  )n

m



Downsampling: bounds and using it for

groups, a few comments

as K goes up and m gets bigger (closer to ,  gets closer to 1), we get

closer to just calculating LOO

if  is really small, we get something very different from LOO (but perhaps

still interesting: what do you think?)

n  n
m

m



we can do downsampling for groups: compare all the cases in which the

whole group is missing!

for groups: if m/n gets too small (e.g. imagine weʼre only grabbing 2

instances at a time - what would happen), probably not so useful… but

interesting?



Shapley values

Our third retraining-based approach!



Shapley value: the Idea

from cooperative game theory

idea: give people an idea about their "value added" in a game where they

might choose from a variety of teams

if we treat each instance as a "player" and imagine all the possible "teams"

that might exist, we start to get a Shapley value



Shapley value: The Game

Weʼre imagining a game in which each data point is one "player" and the

players want to get the best possible performance.

We want to give each player a score, but that score should account for all the

possible "teams" they might join.



Why Shapley?

basic idea is to devise a mathematically principled way to distribute

rewards to people who contribute to some cooperative endeavor

ex: carbon emissions

ex: distribute bonus to employees

ex: marketing attribution (how did IG ads and YouTube ads "work together"

to get you to buy something)



Shapley value: The Teams

Imagine 4 players: Alice, Bob, Chen, and Di

Calculate , then calculate  (what if itʼs just Alice, Bob, and

Chen), then calculate  (what if itʼs just Alice, Bob, and Di), and so on.

Including  (what if itʼs literally just Alice by herself), etc.

All groups of size 4, all groups of size 3, all groups of size 2, all groups of

size 1.

L(D  )ABCD L(D  )ABC

L(D  )ABD

L(D  )A



Shapley value: How many teams?

The Power set - all subsets of all sizes.

How many subsets in the power set?

Well, each time we construct a set, each item can either be in the set or not.

See Wikipedia for much more detailed explanation:

https://en.wikipedia.org/wiki/Power_set

2n

https://en.wikipedia.org/wiki/Power_set


Shapley value: The Equations

(open paper)



For all the "coalitions" S without item i, compare the "score" with i and

without i.

Each time, divide by the binomial coefficient (n-1, cardinality of S), i.e. n-1

choose size of S.

This tells us how many other ways there are to create a team of the same

size, and we want to weight things relative how many other combinations

exist



Example

We have 10 data points. We omit point 1 (i=1). S has size 9, so the LOO value

gets divided by "9 choose 9" = 1.

Next we examine all datasets of size 8 (missing 1+2, missing 1+3…). |S| = 8,

so 9 choose 8 gives us 9. Each of these 9 coalitions gets divided by 9.

Next we examine all datasets of size 7 (missing 1+2+3, missing 1+2+4…). |S|

= 8, so 9 choose 7 gives us 36. Each of these 36 coalitions gets its influence

divided by 36.

the goal is to weight all coalitions sizes equally



denominator essentially weights each marginal contribution v(S ∪ \{i\}) -

v(S) by the probability of that particular sequence occurring if we were to

take all players, randomly shuffle them into a line to build teams

hence, Shapley values represent an "average" or "expected" marginal

contribution - they literally average over all possible sequences in which

coalitions could form, with each sequence equally likely.



Shapley values

Gives us the weighted impact on risk when  is added to a random training

subset of any size

We add weights so that e.g. for n=10 and i=1, all 9 teams of size 2 have the

same weight as all 36 teams of size 7

Looking forward: we donʼt have to weight all sizes equally, though

can think of it as a LOO influence that accounts for all possible subsets of

z  i

D



Why account for all coalitions?

What if you know a super secret recipe

Your part of a AI chef training set

But one other person knows your recipe too

In LOO, you look like you have very little value

But if you were added to a random subset of 10 other people, you look like

you have amazing value!



Why weight all coalition sizes equally

We donʼt have to!

The "Beta Shapley" is all about this

https://arxiv.org/abs/2110.14049

Idea: weight "low cardinality" examples more heavily (e.g. the "what if I was

added to group of 10 other people instead of 1000 other people, will I look

more impressive?") and get good data value estimates

https://arxiv.org/abs/2110.14049


Shapley and feature explanations

you may have also seen Shapley values mentioned in explainable AI and/or

fair AI materials

also used for feature explanations (though some issues, see

https://proceedings.mlr.press/v119/kumar20e.html)

https://proceedings.mlr.press/v119/kumar20e.html


Shapley properties

researchers like the nice theoretical properties

Null player: add no marginal value to any coalition -> receive zero payoff

Symmetrical - "equal treatment of equals" (from wp)

Linear - Shapley value of a sum of games equals the sum of their individual

Shapley values

Pareto Optimality

Accounts for multiple training set sizes

https://en.wikipedia.org/wiki/Shapley_value


Shapley: empirical pros

Better at detecting data poisoning?

maybe better for compensating people (open research question!)



Shapley caveats

super expensive. Worst case exponential time (pending P=NP…)

 models, not  models…

can be estimated

2n n



Shapley estimation

Weʼre just going to the discuss the Monte Carlo approach

Basic idea: shuffle your training data

Running example: 1,2,3,4 - > e.g. 4,2,3,1



"Work left to right" through your shuffled data: Find L(4), then L(4,2), then

L(4,2,3), then L(4,2,3,1)

Each time you add a training data, this counts towards its running marginal

contribution

Optional: if we hit some "performance threshold", stop (if we already got to

our expected accuracy halfway through, just give all the remaining data

points score of 0)



Influence functions
(gradient based)

"training instances only influence a model through training gradients"

use Taylor series approximations and some assumptions

this is where gradient and hessian come from!

static vs dynamic: do we just focus on the fixed final params

major limitation wrt high influence



Assumptions

stationarity: model params have converged

convexity

1. https://en.wikipedia.org/wiki/Jensen's_inequality ↩

[1]

https://en.wikipedia.org/wiki/Jensen%27s_inequality


Basic idea

if model  and loss  are twice-differentiable and strictly convex, we can

calculate the change in loss when a training instance is upweighted by 

without actually retraining

using closed form expression that takes into account the Hessian (based

on second derivatives of loss wrt params) and gradient (first derivative of

loss wrt params)

itʼs not exact, itʼs a Taylor series

f L
ϵ



Hessian review

Hessian = matrix of second derivatives of loss function

General ML uses:

Shows curvature of loss landscape

Enables better optimization (Newtonʼs method)

Helps detect sharp vs flat minima



For influence functions:

Needed because influence = how params change when you perturb

training data

Inverse Hessian tells you how to scale updates in different directions

Key part of influence function formula (appears as H^-1)



Main challenge:

O(p²) parameters for p-param model

Usually need approximations

For influence functions, can use Hessian-vector products instead of full

matrix



Worked example:

https://stats.stackexchange.com/questions/68391/hessian-of-logistic-

function

https://stats.stackexchange.com/questions/68391/hessian-of-logistic-function
https://stats.stackexchange.com/questions/68391/hessian-of-logistic-function


Recap

TLDR: if we have the gradients and Hessians  we can compute in closed

form how model loss will change with  is removed

itʼs still an estimate, but we expect it to be a good estimate

1. https://en.wikipedia.org/wiki/Hessian_matrix ↩

[1]

z  i

https://en.wikipedia.org/wiki/Hessian_matrix


What should we know for 419

If we want to do active maths research in this area, good to understand

everything in the paper

For our purposes, we want to understand the big idea behind each kind of

data value

Aim to understand the intuitive description of whatʼs going on (H+L make

an effort to provide this)

Understand why we canʼt compute "true" influence for most models

Understand why the methods vary in time and space complexity



Code for influence

Check out several implementations, e.g.

https://github.com/kohpangwei/influence-release,

https://github.com/nimarb/pytorch_influence_functions/blob/master/pytorch_influe

https://github.com/alstonlo/torch-

influence/blob/main/torch_influence/base.py

https://github.com/kohpangwei/influence-release
https://github.com/nimarb/pytorch_influence_functions/blob/master/pytorch_influence_functions/calc_influence_function.py
https://github.com/alstonlo/torch-influence/blob/main/torch_influence/base.py
https://github.com/alstonlo/torch-influence/blob/main/torch_influence/base.py


My suggested mental model: which

"teams" are allowed

We can think of a 2-D space to organize these different methods

The first dimension is: which "teams" data points does a given influence

method consider?

The second dimension is: how "close" to accurate do we want to be (do we

want just a few samples or many samples))



LOO says: only one team allowed: everybody else + you versus everybody

else without you

can alternatively view this as effectively, no variety in teams allowed

Downsampling says: weʼll consider a variety of teams, of some fixed size

set by the researchers, say 70%

but effectively similar to LOO



What does this all have to do with human-

centered AI

All these methods estimate what will happen in some counterfactual world in

which the data changes.

What if people actually cause that data to change?

Thatʼs where weʼll be going next…


